Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 27
1.
ACS Chem Neurosci ; 15(8): 1684-1701, 2024 Apr 17.
Article En | MEDLINE | ID: mdl-38564598

Copper oxide nanoparticles (CuO-NPs) are commonly used metal oxides. Betaine possesses antioxidant and neuroprotective activities. The current study aimed to investigate the neurotoxic effect of CuO-NPs on rats and the capability of betaine to mitigate neurotoxicity. Forty rats; 4 groups: group I a control, group II intraperitoneally CuO-NPs (0.5 mg/kg/day), group III orally betaine (250 mg/kg/day) and CuO-NPs, group IV orally betaine for 28 days. Rats were subjected to neurobehavioral assessments. Brain samples were processed for biochemical, molecular, histopathological, and immunohistochemical analyses. Behavioral performance of betaine demonstrated increasing locomotion and cognitive abilities. Group II exhibited significantly elevated malondialdehyde (MDA), overexpression of interleukin-1 beta (IL-1ß), and tumor necrosis factor-alpha (TNF-α). Significant decrease in glutathione (GSH), and downregulation of acetylcholine esterase (AChE), nuclear factor erythroid 2-like protein 2 (Nrf-2), and superoxide dismutase (SOD). Histopathological alterations; neuronal degeneration, pericellular spaces, and neuropillar vacuolation. Immunohistochemically, an intense immunoreactivity is observed against IL-1ß and glial fibrillary acidic protein (GFAP). Betaine partially neuroprotected against CuO-NPs associated alterations. A significant decrease at MDA, downregulation of IL-1ß, and TNF-α, a significant increase at GSH, and upregulation of AChE, Nrf-2, and SOD. Histopathological alterations partially ameliorated. Immunohistochemical intensity of IL-1ß and GFAP reduced. It is concluded that betaine neuroprotected against most of CuO-NP neurotoxic effects through antioxidant and cell redox system stimulating efficacy.


Copper , Nanoparticles , Rats , Animals , Copper/metabolism , Antioxidants/pharmacology , Antioxidants/metabolism , Betaine/pharmacology , Oxidative Stress , Tumor Necrosis Factor-alpha/metabolism , Superoxide Dismutase/metabolism , Glutathione/metabolism , Brain/metabolism , Oxides/metabolism , Oxides/pharmacology
3.
J Vet Res ; 67(3): 459-469, 2023 Sep.
Article En | MEDLINE | ID: mdl-37786839

Introduction: Penconazole (PEN) is a widely applied triazole fungicide. This study sought to define the efficacy of N-acetyl-l-cysteine (NAC) in mitigating PEN-triggered hepatorenal toxicity in rats. Material and Methods: Twenty-eight adult male albino Wistar rats were assigned to four groups: a normal control (NC), a PEN group, a NAC group and a PEN+NAC group. Administration of PEN (50 mg/kg body weight (b.w.) every 2 days) and NAC (150 mg/kg b.w., daily) took place via oral gavage for 10 days. Results: Effective amelioration by NAC of PEN-induced liver and kidney dysfunction was indicated by a significant reduction in the circulating liver and kidney markers (aspartate aminotransferase, alanine aminotransferase, urea and creatinine). Attenuation of PEN-induced oxidative stress and lipid peroxidation in liver and kidney tissues was evident in a significant reduction in malondialdehyde and enhanced total antioxidant capacity. Moreover, NAC significantly reduced the histopathological alterations and the expression of tumour necrosis factor α in liver and kidney tissue. Furthermore, NAC maintained the messenger RNA levels of nuclear factor erythroid 2-related factor 2 (Nrf2), haem oxygenase 1, and Kelch-like erythroid cell-derived protein 1 and prevented nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) protein upregulation caused by PEN. Conclusion: N-acetyl-1-cysteine protected against PEN-induced hepatorenal oxidative damage and inflammatory response via activation of Nrf2 and inhibition of NF-κB pathways.

4.
Environ Toxicol Pharmacol ; 94: 103911, 2022 Aug.
Article En | MEDLINE | ID: mdl-35724857

Plastic products are widely used in different applications. Thus, exposure of human and other organisms to these products may affect their biological system. The current study was conducted to investigate the potential deleterious effect of Polysterene nanoparticles (PS-NPs) on the liver and to state the cellular and molecular mechanisms associated with exposure to PS-NPs.30 male rats were divided randomly and equally into 3 groups; control (distilled water), low dose (3 mg/kg/day) and high dose (10 mg/kg/day) exposed group via oral gavage for 5 successive weeks. PS-NPs caused elevation in ALT, AST and MDA, upregulation of apoptosis-related genes and significant decrease in GSH and mRNA expression for antioxidant-related genes (Nrf-2 and GPx). Moreover, alterations in hepatic tissue architecture and positive caspase-3 expression was noticed in a dose- dependent manner. Collectively, PS-NPs can induce hepatoxicity in rats in a dose dependent manner, so the health risk of PS-NPs should not be ignored.


Liver Diseases , Nanoparticles , Animals , Apoptosis , Hepatocytes/metabolism , Humans , Liver , Liver Diseases/metabolism , Male , Nanoparticles/toxicity , Oxidative Stress , Polystyrenes/toxicity , Rats
5.
Cell Tissue Res ; 388(1): 149-165, 2022 Apr.
Article En | MEDLINE | ID: mdl-35088181

Polystyrene Nanoparticles (PS-NPs) used for packaging foam, disposable cups, and food containers. Therefore, this study aimed to evaluate PS- NPs toxic effects on kidney of adult male albino rats. A total of 30 rats divided into three groups (n = 10): group I negative control group; group II orally administered 3% PS-NPs (3 mg/kg body weight/day) and group III orally administered 3% PS-NPs (10 mg/kg body weight/day) for 35 days. Blood and kidney samples collected and processed for biochemical, histopathological, and immunohistochemical examinations. Results showed that low and high doses PS-NPs had significantly increased serum blood urea nitrogen (BUN), creatinine, malondialdehyde, significantly further reduced glutathione, downregulation of nuclear factor erythroid 2-related factor 2 and glutathione peroxidase, upregulation of caspase-3 and Cytochrome-c. Histopathological examination revealed several alterations. Low dose of PS-NPs exhibited dilated glomerular capillaries, hypotrophy of some renal corpuscles significantly decreases their diameter to 62 µm. Some proximal convoluted tubules and distal convoluted tubules showed loss of cellular architecture with pyknotic nuclei. Hyalinization and vacuolation in renal medulla. In high dose PS-NPs, alterations increased in severity. A significant increase in percentage area of cyclooxygenase-2 in low and high-doses. In conclusion, PS-NPs are a nephrotoxic causing renal dysfunction.


Kidney Diseases , Nanoparticles , Animals , Kidney/metabolism , Kidney Diseases/metabolism , Male , Malondialdehyde/metabolism , Nanoparticles/toxicity , Oxidative Stress , Polystyrenes/analysis , Polystyrenes/metabolism , Polystyrenes/toxicity , Rats
6.
Int J Biol Macromol ; 191: 792-802, 2021 Nov 30.
Article En | MEDLINE | ID: mdl-34597692

Melamine and its analogues are illegally added to raise the apparent protein content in foods. The elevated concentrations of these compounds cause adverse effects in humans and animals. In this contribution, the protective effects of the synthesized starch-stabilized selenium nanoparticles (Se-NPs@starch) on melamine-induced hepato-renal toxicity have been systematically investigated. The Se-NPs@starch were characterized by X-ray photoelectron spectroscopy (XPS) analysis, energy dispersive spectroscopy (EDS) mapping analysis, TEM, and FT-IR. Starch plays a crucial role in the stabilization and dispersion of Se NPs, as noticed from the TEM and EDS investigations. Furthermore, the atomic ratio of Se distribution over the starch surface is approximately 1.67%. The current study was conducted on four groups of adult male rats, and the oral daily treatments for 28 days were as follows: group I served as control, group II received Se-NPs@starch, group III was exposed to melamine, while group IV was treated with melamine and Se-NPs@starch. The results reveal a significant alteration in the histoarchitecture of both hepatic and renal tissues induced by melamine. Furthermore, elevated liver and kidney function markers, high malondialdehyde, and increased expression levels of apoptosis-related genes besides a reduction in GSH and expression levels of antioxidant genes were observed in the melamine-exposed group. Interestingly, the administration of the Se-NPs@starch resulted in remarkable protection of rats against melamine-induced toxicity through increasing the antioxidant capacity and inhibiting oxidative damage. Collectively, this study provides affordable starch-stabilized Se-NPs with potent biological activity, making them auspicious candidates for prospective biomedical applications.


Chemical and Drug Induced Liver Injury/prevention & control , Nanoparticles/chemistry , Selenium/chemistry , Starch/chemistry , Triazines/toxicity , Animals , Apoptosis , Chemical and Drug Induced Liver Injury/drug therapy , Chemical and Drug Induced Liver Injury/etiology , Kidney/drug effects , Kidney/metabolism , Liver/drug effects , Liver/metabolism , Male , Nanoparticles/therapeutic use , Oxidative Stress , Rats
7.
J Biochem Mol Toxicol ; 35(10): e22884, 2021 Oct.
Article En | MEDLINE | ID: mdl-34392569

Penconazole (PEN) is a widely used systemic fungicide to treat various fungal diseases in plants but it leaves residues in crops and food products causing serious environmental and health problems. N-acetylcysteine (NAC) is a precursor of the antioxidant glutathione in the body and exerts prominent antioxidant and anti-inflammatory effects. The present study aimed to explore the mechanistic way of NAC to ameliorate the PEN neurotoxicity in male rats. Twenty-eight male rats were randomly divided into four groups (n = 7) and given the treated material via oral gavage for 10 days as the following: Group I (distilled water), Group II (50 mg/kg body weight [bwt] PEN), Group III (200 mg/kg bwt NAC), and Group IV (NAC + PEN). After 10 days all rats were subjected to behavioral assessment and then euthanized to collect brain tissues to perform oxidative stress, molecular studies, and pathological examination. Our results revealed that PEN exhibits neurobehavioral toxicity manifested by alteration in the forced swim test, elevated plus maze test, and Y-maze test. There were marked elevations in malondialdehyde levels with reduction in total antioxidant capacity levels, upregulation of messenger RNA levels of bax, caspase 3, and caspase 9 genes with downregulation of bcl2 genes. In addition, brain sections showed marked histopathological alteration in the cerebrum and cerebellum with strong bax and inducible nitric oxide synthetase protein expression. On the contrary, cotreatment of rats with NAC had the ability to improve all the abovementioned neurotoxic parameters. The present study can conclude that NAC has a neuroprotective effect against PEN-induced neurotoxicity via its antioxidant, anti-inflammatory, and antiapoptotic effect. We recommend using NAC as a preventive and therapeutic agent for a wide variety of neurodegenerative and neuroinflammatory disorders.


Acetylcysteine/administration & dosage , Anti-Inflammatory Agents/administration & dosage , Antioxidants/administration & dosage , Neurodegenerative Diseases/chemically induced , Neurodegenerative Diseases/drug therapy , Neuroinflammatory Diseases/chemically induced , Neuroinflammatory Diseases/drug therapy , Neuroprotective Agents/administration & dosage , Triazoles/adverse effects , Animals , Apoptosis/drug effects , Behavior, Animal/drug effects , Brain/metabolism , Brain/pathology , Caspase 3/metabolism , Elevated Plus Maze Test , Male , Malondialdehyde/metabolism , Neurodegenerative Diseases/metabolism , Neurodegenerative Diseases/psychology , Neuroinflammatory Diseases/metabolism , Neuroinflammatory Diseases/psychology , Oxidative Stress/drug effects , Rats , Rats, Sprague-Dawley , Signal Transduction/drug effects , Treatment Outcome , bcl-2-Associated X Protein/metabolism
8.
J Ethnopharmacol ; 278: 114318, 2021 Oct 05.
Article En | MEDLINE | ID: mdl-34111539

ETHNOPHARMACOLOGICAL RELEVANCE: Chickpea was used in both greek and indian traditional medicine for hormonal related conditions as menstrual induction, acceleration of parturation, treatment of retained placenta and stimulation of lactation. Chickpea (Cicer arietinum) sprout isoflavone isolates exhibited reasonable estrogenic activities. Isoflavones, a subtype of phytoestrogens, are plant derivatives with moderate estrogenic activity that tend to have protective effects on hormonal and metabolic abnormalities of women with polycystic ovary syndrome (PCOS). AIM OF THE STUDY: In this study, we investigated the effect of UPLC/ESI-MS characterized Cicer arietinum L. seeds ethanol extract (CSE) on ovarian hormones, oxidative response and ovarian histological changes on induced PCOS rat model. MATERIALS AND METHODS: Thirty-five rats were divided into five groups including negative control, PCOS, and treatment groups. PCOS was induced using letrozole (1 mg/kg) daily orally for 21 days. Each treatment group was treated with one of the following for 28 days after induction of PCOS: clomiphene citrate (1 mg/kg), and CSE at 250 and 500 mg/kg. Ovaries and uteri were excised, weighed and their sections were used for quantitative real-time reverse transcriptase polymerase chain reaction, antioxidant assays and histomorphometric study of the ovaries. The antioxidant assays, histopathological examination, hormonal and metabolic profiles, and Cyp11a1(steroidogenic enzyme) mRNA expression were measured. RESULTS: In all treatment groups, ovarian weight was significantly decreased despite having no significant effect on uterine weight. Histomorphometric study in the treatment groups revealed a significant decrease in the number and diameter of cystic follicles, a significant increase in granulosa cell thickness while, thickness of theca cells was significantly decreased when compared to PCOS. Hormone levels, metabolic profile and antioxidant status were improved in the treatment groups. Moreover, Cyp11a1 mRNA expression was significantly downregulated in the treatment groups compared to PCOS. CONCLUSIONS: In the current study, CSE enhanced the reproductive and metabolic disorders which were associated with PCOS induction. For the first time, we have highlighted the effect of CSE in treating PCOS and its associated manifestations.


Cicer/chemistry , Letrozole/toxicity , Phytotherapy , Plant Extracts/therapeutic use , Polycystic Ovary Syndrome/drug therapy , Animals , Aromatase Inhibitors/toxicity , Cholesterol Side-Chain Cleavage Enzyme/genetics , Cholesterol Side-Chain Cleavage Enzyme/metabolism , Clomiphene/therapeutic use , Dose-Response Relationship, Drug , Estrogen Antagonists/therapeutic use , Female , Gene Expression Regulation, Enzymologic/drug effects , Organ Size , Ovary/pathology , Plant Extracts/administration & dosage , Plant Extracts/chemistry , Polycystic Ovary Syndrome/chemically induced , Random Allocation , Rats
9.
Chin Med ; 16(1): 36, 2021 Apr 29.
Article En | MEDLINE | ID: mdl-33926485

BACKGROUND: Complementary remedies such as the Chinese herb 'Sheng Ma' (Black cohosh; Actaea racemosa 'AR') are being sought to overcome the shortcomings of conventional hormonal and surgical therapies developed for the treatment of polycystic ovary syndrome (PCOS). However, AR-induced hepatotoxicity necessitates a cautionary warning to be labeled on its products as recommended by the United States Pharmacopeia, where four out of seven hepatotoxic cases in Sweden were possibly associated with black cohosh products. METHODS: We investigated the effects, safety, and molecular targets of black cohosh ethanolic extract and/or vitamin C on ovarian functionality and oxidative response in hyperandrogenism-induced PCOS rats. A well-established rat model using oral letrozole, daily, for 21 days was employed. The rats then received the AR extract with and without vitamin C for 28 days. The hormonal evaluation, antioxidant status, histopathological examination, immunohistochemical analysis, cell proliferation, and the expression ratio of the aromatase (Cyp19α1) gene were evaluated. Additionally, holistic profiling of the AR arsenal of secondary metabolites was performed using ultra-high-performance liquid chromatography (UHPLC) coupled with quadrupole high-resolution time of flight mass spectrometry (QTOF-MS). RESULTS: Beneficial effects were exerted by AR in PCOS rats as antioxidant status, hormonal profile, lipid profile, glucose level, liver functions, and the induced Ki-67 expression in the granulosa, theca cell layers and interstitial stromal cells were all improved. Notably, the combination of AR with vitamin C was not only more effective in reversing the dysregulated levels of testosterone, luteinizing hormone, and mRNA level of Cyp19α1 gene in the PCOS rat, but also safer. The combination regulated both ovarian and hepatic malondialdehyde (MDA) and glutathione (GSH) levels with histological improvement observed in the liver and ovaries. In addition, the untargeted metabolomic profiling enabled the identification of 61 metabolites allocated in five major chemical classes. CONCLUSION: This study demonstrated the benefit of the combinatorial effects of AR and vitamin C in mitigating the reproductive and metabolic disorders associated with PCOS with the elimination of AR hepatotoxic risk.

10.
Environ Sci Pollut Res Int ; 28(31): 42275-42289, 2021 Aug.
Article En | MEDLINE | ID: mdl-33797725

Glyphosate (GLP) is the most commonly used herbicide that presents many hazards to the environment and living organisms. The present study aimed to explore hepatotoxic properties of GLP on adult albino rats, and the ability of N-acetylcysteine (NAC) to ameliorate these toxic effects. Thirty mature male albino rats were distributed into 3 groups (10 rats/group): Group I (C) a negative control, Group II (GLP) orally administered Roundup 0.8503 ml/kg/day which contain GLP (375 mg/kg) (1/10 of LD50) by gavage needle, and Group III (NAC+ GLP) received NAC (160 mg/kg, 1h before Roundup) by gavage needle and Roundup (0.8503 ml/kg) orally for 6 weeks. Blood and liver samples were collected and processed for biochemical, histopathological, ultrastructural, and immunohistochemical investigations. Group II displayed a significant elevation of aspartate aminotransferase (AST), alanine aminotransferase (ALT), and malondialdehyde (MDA) levels, as well as overexpression of apoptotic markers. The total antioxidant capacity "TAC" and mRNA expression of NRF2 were significantly decreased. Concerning the histopathological findings, there were various degenerative changes as the hepatocytes showed hydropic swelling with nuclear pyknosis. These alterations were confirmed ultrastructurally as most of the cytoplasmic organelles were lost and the mitochondria appeared to deteriorate. Immunohistochemical results showed intense immunoreactivity against proliferating cell nuclear antigen (PCNA) and caspase-3. NAC administration before GLP partially ameliorates these alterations. ALT, AST, and MDA levels as well as expression of apoptotic markers were significantly reduced. TAC and mRNA expression of NRF2 were significantly increased. Histopathological alterations were partially improved as the hepatocytes returned normal and ultrastructurally they showed nearly normal cytoplasmic organelles. Additionally, the intense expression of PCNA and caspase-3 was significantly reduced. We concluded that NAC can ameliorate most of the adverse effects of GLP exposure through its antioxidant property and free radicals scavenging capacity.


Acetylcysteine , Chemical and Drug Induced Liver Injury , Acetylcysteine/metabolism , Acetylcysteine/pharmacology , Animals , Antioxidants/metabolism , Chemical and Drug Induced Liver Injury/metabolism , Chemical and Drug Induced Liver Injury/prevention & control , Glycine/analogs & derivatives , Liver/metabolism , Male , Oxidative Stress , Rats , Rats, Wistar , Glyphosate
11.
Environ Sci Pollut Res Int ; 28(28): 37940-37952, 2021 Jul.
Article En | MEDLINE | ID: mdl-33723775

Lead is one of the major environmental pollutions worldwide, particularly in developing countries. Though, various occupational and public health measures have been undertaken to control lead exposure. The present study is designed to investigate the role of zinc oxide nanoparticles (ZnO-NPs) to reduce the bioaggregation of lead in the brain, liver, and kidneys and prevent these organ oxidative damage and apoptosis. Twenty male Wistar rats were grouped into 4 gatherings and exposed to the following materials daily on the skin for 2 weeks: 1-normal saline, 2-ZnO-NPs, 3-PbO, and 4-ZnO-NPs+ PbO. Topical application of PbO to rats increased lead contents in blood and different organs causing remarkable oxidative stress damage, apoptosis, and histopathological alterations in these organs. Moreover, PbO-receiving group showed strong positive caspase-3 protein expression with up-regulation of mRNA levels of BAX and COX-2. Co-treatment of ZnO-NPs with PbO could diminish the toxicologic parameters and the above-mentioned immune marker and gene expression levels. Our data suggest the role of ZnO-NPs cream to reduce the risk of lead dermal exposure via preventing absorption and accumulation of it in the internal organs so that it protects these organs from further damage.


Nanoparticles , Zinc Oxide , Animals , Lead/toxicity , Male , Oxidative Stress , Oxides , Rats , Rats, Wistar , Zinc Oxide/toxicity
12.
Environ Sci Pollut Res Int ; 28(24): 32027-32034, 2021 Jun.
Article En | MEDLINE | ID: mdl-33624241

The present study aimed to explain the mechanisms involved in cell-mediated immunotoxicity of atrazine (ATR) in rabbits and to evaluate the ameliorative role of glycyrrhizic acid (GA) against such toxic effects. Forty rabbits were assigned into 4 equal groups: control, ATR, GA, and ATR + GA groups. ATR (2475 ppm) and GA (60 µg of GA/ml of water) were administrated via food and drinking water, respectively, for 60 consecutive days. The cell-mediated immunotoxicity of ATR was clarified by the induced thymus immunotoxicity through downregulation of interleukin (IL)-9 gene and interferon-γ (IFN-γ) gene expression, upregulation in caspase-3, and significant decrease in the total leukocytic and lymphocyte counts. Histopathological investigations demonstrated severe depletion of lymphoid follicles in the medulla of the thymus gland. On the other hand, co-administration of GA for group 4 improved most of the undesirable impacts of ATR. In conclusion, the alteration in IL-9/IFN-γ expression may involve ATR-induced thymocyte apoptosis which may explain the mechanisms of ATR-induced cell-mediated immunotoxicity with a possible amelioration influence of GA administration.


Atrazine , Herbicides , Animals , Apoptosis , Atrazine/toxicity , Glycyrrhizic Acid/pharmacology , Rabbits
13.
Environ Sci Pollut Res Int ; 27(31): 39507-39515, 2020 Nov.
Article En | MEDLINE | ID: mdl-32651782

The present study was led to investigate the defensive role of Terminalia laxiflora extract (TLE) on fipronil (FPN) induced hepatotoxicity and nephrotoxicity in male rats. Rats were administered with TLE (100 mg/kg) against the renal toxicity and hepatotoxicity induced by administration of FPN (10.5 mg/kg) for 30 days. At the end of the experimental period, the serum, liver, and kidneys were harvested and assessed for subsequent analysis. FPN administration to rats resulted in a significant elevation of serum transaminases, urea, and creatinine. Also, FPN-treated groups exhibited a marked reduction in total protein and albumin levels. Compared with the control group, the level of malondialdehyde (MDA) was elevated in groups treated with FPN, whereas superoxide dismutase (SOD), catalase (CAT) activities, and glutathione levels were distinctly reduced in this group. Significant increases in genomic DNA fragmentation and the expression level of the caspase-3 gene were also recorded. The biochemical result was supported by histopathological findings. Co-administration of TLE along with FPN significantly diminished the liver and kidney function tests decreased the level of lipid peroxidation, and enhanced all the antioxidant enzymes, while also diminishing the expression of caspase-3 and DNA laddering, indicating amelioration of DNA damage. These results indicate that TLE plays a vital role in diminishing FPN-induced hepatotoxicity and nephrotoxicity.


Terminalia , Animals , Antioxidants , Glutathione , Kidney , Lipid Peroxidation , Male , Oxidative Stress , Plant Extracts , Pyrazoles , Rats , Rats, Wistar , Superoxide Dismutase
14.
Int J Nanomedicine ; 14: 7729-7741, 2019.
Article En | MEDLINE | ID: mdl-31806958

BACKGROUND: Recently, several studies demonstrate the possible role of zinc oxide (ZnO) in the protection of several skin diseases, but less is known about the role of ZnO nanoparticles in the inflammatory skin disease. So, this study was designed to confirm the pivotal role of the nano zinc oxide cream in the alleviation of lead oxide (PbO) induced-allergic dermatitis in rats. MATERIALS AND METHODS: Two concentrations (1% and 6%) of ZnONPs creams were prepared and characterized prior to being used in the study. A total number of 30 male Wistar rats were randomly divided into six groups. Group 1 (negative control), groups 2&3 (either 1% or 6% ZnONPs control groups), group 4 (PbO), groups 5&6 (co-treatment of each ZnONPs concentration+PbO). All rats in different groups were observed daily to determine the severity of dermal gross lesions. Histopathological studies, mRNA analysis, and oxidative stress evaluations were performed on the affected skin tissue. Immunohistochemical studies were performed to evaluate the expression of cluster of differentiation CD4, CD8 and intercellular adhesion molecules ICAM-1 in different groups. RESULTS: PbO caused extensive skin oxidative damage manifested by a significant increase in MDA level with a decrease in GSH content and CAT activity. The results of histopathological and immunohistochemical examinations revealed that topical application of PbO for 14 days led to severe allergic dermatitis with remarkable elevations in the number of CD4+ T-helper, CD8+ T-cytotoxic lymphocytes, and ICAM-1 expression. On the other hand, noticeable improvements were recorded in all the previous toxicopathological parameters among the groups treated by either 1% or 6% ZnO-NPs cream. However, the best results were observed in the group treated with 1% ZnO-NPs cream. CONCLUSION: Our findings suggest that 1% of ZnO-NPs cream is safe when applied topically on the inflamed skin. Moreover, it had anti-inflammatory and antioxidant effects so that, it is recommended to use the 1% ZnO-NPs cream to avert the dermal toxicity-induced by PbO.


Dermatitis, Allergic Contact/drug therapy , Lead/toxicity , Metal Nanoparticles/therapeutic use , Oxides/toxicity , Protective Agents/pharmacology , Zinc Oxide/pharmacology , Administration, Topical , Animals , Antioxidants/chemistry , Antioxidants/pharmacology , Dermatitis, Allergic Contact/etiology , Dermatitis, Allergic Contact/pathology , Disease Models, Animal , Male , Malondialdehyde/metabolism , Metal Nanoparticles/chemistry , Ointments/chemistry , Ointments/pharmacology , Oxidative Stress/drug effects , Protective Agents/administration & dosage , Protective Agents/chemistry , Rats, Wistar , Zinc Oxide/administration & dosage , Zinc Oxide/chemistry
15.
Acta Histochem ; 121(5): 563-574, 2019 Jul.
Article En | MEDLINE | ID: mdl-31072619

The accidental spilling of petroleum oils into natural water resources expose fishes in the effluent area to serious problems.. Oreochromis niloticus were used in the current study as a model to investigate the toxicity of used engine oil and to evaluate the protective role of vitamin C against this toxicity. The oil concentration used in this study was previously determined to be 0.25 ml/l by 96 h-LC50. After 21 days of engine oil exposure, haematological and biochemical analyses revealed significant reduction in RBCs counts, haemoglobin concentrations and total proteins. However, ALT, AST and glucose levels were significantly increased by the end of the experiment indicating the damaging effects of the oil on fish tissues. Oxidative stress biomarkers were also measured; liver CAT activity was significantly decreased in the oil exposed group compared to control group, while MDA levels were significantly elevated. Histopathological examination showed the presence of several alterations in hepatic and branchial tissues in exposed group compared to the control group. Significant elevations in CYP1 A1 mRNA expression levels in hepatic tissue were also detected in the group exposed to used engine oil compared to the control group. However, supplementation of fishexposed to used engine oil with vitamin Csignificantly enhance the biochemical, oxidative and histological parameters.


Ascorbic Acid/pharmacology , Cichlids , Gills/drug effects , Liver/drug effects , Petroleum/toxicity , Animals , Blood Chemical Analysis , Cichlids/blood , Cytochrome P-450 CYP1A1/genetics , Cytochrome P-450 CYP1A1/metabolism , Gills/pathology , Gills/ultrastructure , Health Status , Histocytochemistry , Liver/pathology , Liver/ultrastructure , Microscopy, Electron, Transmission , Oxidative Stress/drug effects
16.
Biosci Rep ; 39(3)2019 03 29.
Article En | MEDLINE | ID: mdl-30777931

The extensive use of fipronil (FPN) may trigger hazards to more than insects. The present investigation was carried out to evaluate the abrogating role of Terminalia laxiflora (TL) methanol extract (TLE) against the neurotoxic effects provoked by FPN. Fourty male albino rats were assigned into four equal groups. The first group served as control, the second one was orally administered FPN (10.5 mg/kg BW), the third group was given combination of FPN and TLE) (100 mg/kg BW), and the fourth one was orally given TLE. Our findings highlighted the efficacy of TLE as a neuroprotectant through a significant reduction in malondialdehyde (MDA) content by 25.8%, elevations of the reduced glutathione (GSH) level, catalase (CAT,) and superoxide dismutase (SOD) activities by 30.9, 41.2, and 48.2% respectively. Consequently, the relative mRNA levels of both Bax and caspase-3 were down-regulated by 40.54% and caspase-3 by 30.35% compared with the control group. Moreover, restoration of the pathological tissue injuries were detected. In conclusion, TLE proved to be a potent neuroprotective agent against the FPN-induced toxicity.


Neurotoxicity Syndromes/prevention & control , Plant Extracts/pharmacology , Pyrazoles/toxicity , Terminalia/chemistry , Animals , Caspase 3/genetics , Caspase 3/metabolism , Catalase/metabolism , Glutathione/metabolism , Insecticides/toxicity , Male , Malondialdehyde/metabolism , Methanol/chemistry , Neuroprotective Agents/chemistry , Neuroprotective Agents/pharmacology , Neurotoxicity Syndromes/etiology , Neurotoxicity Syndromes/metabolism , Plant Extracts/chemistry , Rats , Superoxide Dismutase/metabolism
17.
Neurotoxicology ; 72: 15-28, 2019 05.
Article En | MEDLINE | ID: mdl-30703413

Lead (Pb) is a ubiquitous environmental and industrial pollutant with worldwide health problems. The present study was designed to investigate the neurotoxic effects of Pb in albino rats and to evaluate the ameliorative role of garlic as well as Spirulina maxima against such toxic effects. Forty adult male rats were used in this investigation (10 rats/group). Group I: served as control, Group II: rats received lead acetate (100 mg/kg), Group III: rats received both lead acetate (100 mg/kg) and garlic (600 mg/kg) and Group IV: rats received both lead acetate (100 mg/kg) and spirulina (500 mg/kg) daily by oral gavage for one month. Exposure to Pb acetate adversely affected the measured acetyl cholinesterase enzyme activity, oxidative stress and lipid peroxidation parameters as well as caspase-3 gene expression in brain tissue (cerebrum and cerebellum). Light and electron microscopical examination of the cerebrum and cerebellum showed various lesions after exposure to Pb which were confirmed by immunohistochemistry. On the other hand, administration of garlic and spirulina concomitantly with lead acetate ameliorated most of the undesirable effects. It could be concluded that, the adverse effects induced by lead acetate, were markedly ameliorated by co-treatment with S. maxima more than garlic.


Apoptosis/drug effects , Brain/drug effects , Brain/metabolism , Caspase 3/metabolism , Garlic , Lead/toxicity , Neuroprotective Agents/administration & dosage , Spirulina , Animals , Brain/pathology , Brain/ultrastructure , Gene Expression , Male , Oxidative Stress , Plant Extracts/administration & dosage , Rats
18.
Biomed Pharmacother ; 107: 1754-1762, 2018 Nov.
Article En | MEDLINE | ID: mdl-30257394

The current study was conducted to test the possible ameliorative role of selenium nanoparticles (Se-NPs) against oxidative damage of Leyding cells induced by di-n-butyl phthalate (DBP) in pre-pubertal male rat offspring. Forty-two pregnant female rats treated from gestation day (GD) 12 to postnatal day (PND) 14 day with two doses of Se-NPs (0.2 and 0.5 mg/kg/d) against developmental testicular toxicity induced by DBP (500 mg/kg/d). At PND 25 serum and testes of offspring were collected. Serum LH, the Leydig cells performance [total serum testosterone, LH and testosterone (LH/T) ratio, relative gene expression of insulin-like growth factor-3 (INSL3) and mineralocorticoid receptor (MR)], oxidative stress biomarker malondialdehyde (MDA) and antioxidant machinery [reduced glutathione (GSH), and the relative gene expression of antioxidant enzymes: superoxide dismutase (SOD), glutathione peroxidase (GPx)] were estimated in all groups. The obtained results revealed that maternal exposure to DBP significantly reduced total serum testosterone level, relative mRNA expression of INSL3 and MR genes with observed testicular damage revealed by increasing MDA and depressed levels of GSH and antioxidant enzymes. The histopathological changes include necrosis and desquamation of spermatogoneal cells. Co-administration of Se-NPs high dose along with DBP significantly increased serum testosterone, improved LH/T ratio and the relative mRNA expression of INSL3 and MR genes, decreased the level of MDA, and also improved all the antioxidant enzymes expression levels. In conclusion, Se-NPs could be a potent maternal prophylactic agent against the reduced total serum testosterone level and oxidative damage of Leydig cells induced by DBP via reducing the lipid peroxidation (LPO) and enhancing the antioxidant state in pre-pubertal male rat offspring.


Nanoparticles , Oxidative Stress/drug effects , Selenium/pharmacology , Testis/drug effects , Animals , Antioxidants/metabolism , Dibutyl Phthalate/toxicity , Dose-Response Relationship, Drug , Female , Glutathione Peroxidase/metabolism , Insulin/genetics , Leydig Cells/drug effects , Leydig Cells/pathology , Lipid Peroxidation/drug effects , Luteinizing Hormone/blood , Male , Malondialdehyde/metabolism , Particle Size , Proteins/genetics , RNA, Messenger/metabolism , Rats , Rats, Wistar , Selenium/administration & dosage , Superoxide Dismutase/metabolism , Testis/pathology , Testosterone/blood
19.
Toxicol Ind Health ; 34(11): 744-752, 2018 Nov.
Article En | MEDLINE | ID: mdl-30231772

The aim of this study was to investigate the effects of maternal exposure to di-( n-butyl) phthalate (DBP) on testicular development and function in pre-pubertal and post-pubertal male rat offspring. Fourteen pregnant female rats were equally divided into two groups: a control group and a DBP-treated group. During gestation day (GD) 12 to postnatal day (PND) 14, the control group was administered 1 ml/day corn oil, and the DBP-treated group was administered DBP 500 mg/kg/day by oral gavage. On PND 25 (pre-puberty) and PND 60 (post-puberty), blood for serum and the testes were collected from five male offspring of each group. To determine the relationship between the methylation state of the c-Myc promoter and the expression of the c-Myc gene, some apoptotic-related genes, such as p53 and Bax, the anti-apoptotic Bcl-2 gene, and some growth arrest-related genes, such as BRD7 and GAS1, were examined. Compared with the control ( p < 0.05), at pre-puberty, DBP induces c-Myc hyper-methylation with significant downregulation for c-Myc, p53, Bax genes, and significant upregulation for Bcl-2, BRD7, and GAS1, while at post puberty, the methylation state and expression of c-Myc and apoptosis-related genes returned to control levels in the same sequence with the fold change in the expression of BRD7 and GAS1 genes. These findings suggest that DBP induced a transient pre-pubertal increase in c-Myc promoter methylation that may be associated with disruption of both apoptotic and growth mechanisms in the testes.


Apoptosis/drug effects , Dibutyl Phthalate/toxicity , Genes, myc/drug effects , Maternal Exposure/statistics & numerical data , Testis/drug effects , Animals , Female , Male , Pregnancy , Rats , Rats, Wistar , Testis/metabolism
20.
Biomed Pharmacother ; 103: 553-561, 2018 Jul.
Article En | MEDLINE | ID: mdl-29677542

The extensive application of titanium dioxide nanoparticles (TiO2 NPs) in the food industry arouses a debate regarding the probable risk associated with their use. Several recent studies reported that most nanoparticles (NPs) have adverse actions on the liver. The objective of this study is to examine whether Tiron plays a modulatory role against apoptotic damage induced by TiO2 NPs in rat livers. Forty rats were randomly divided into 4 groups; a control group received phosphate-buffered saline, an intoxicated group received 100 mg/kg/day of TiO2 NPs for 60 days, a treated group received 470 mg/kg/day of Tiron for the last 14 days after TiO2 NPs administration, and a Tiron group received Tiron only as previously mentioned. Oral administration of TiO2 NPs significantly increased serum levels of aspartate aminotransferase (AST), alanine aminotransferase (ALT) and alkaline phosphatase (ALP). In the liver, TiO2 NPs increased oxidative stress through increasing lipid peroxidation and decreasing GSH concentration and the levels of the SOD and GPx enzymes. TiO2 NPs significantly upregulated the proapoptotic Bax gene and downregulated the antiapoptotic Bcl-2 gene. Histopathological examination of hepatic tissue reinforced the previous biochemical results. Apoptotic lesions were also obvious in this group. Treatment with Tiron as an antioxidant significantly decreased serum biochemistry, ameliorated oxidative stress in hepatic tissue, upregulated Bcl-2, decreased Bax expression and attenuated the histopathology of hepatic injury. These findings indicate that Tiron effectively diminishes the hazardous effects of TiO2 NPs on rat liver.


1,2-Dihydroxybenzene-3,5-Disulfonic Acid Disodium Salt/therapeutic use , Antioxidants/therapeutic use , Chemical and Drug Induced Liver Injury/drug therapy , Metal Nanoparticles/toxicity , Oxidative Stress/drug effects , Titanium/toxicity , 1,2-Dihydroxybenzene-3,5-Disulfonic Acid Disodium Salt/pharmacology , Animals , Antioxidants/pharmacology , Chemical and Drug Induced Liver Injury/metabolism , Chemical and Drug Induced Liver Injury/pathology , Indicators and Reagents/pharmacology , Indicators and Reagents/therapeutic use , Lipid Peroxidation/drug effects , Lipid Peroxidation/physiology , Liver/drug effects , Liver/metabolism , Liver/pathology , Male , Oxidative Stress/physiology , Rats
...